
The CarrierWave Pattern Language
Draft 0.1

September 16, 2002

Chris K. Wensel

Introduction
This document is intended to present the major patterns in the CarrierWave architecture. Some
patterns are only restated here with links or references to their original source. And a couple of
them aren’t necessarily new but there aren’t any referenceable resources.

This document only identifies the patterns used by CarrierWave, not how CarrierWave applies
them in practice.

Base Patterns

Name: Graph Plan

Intent
Provides a means to describe the structure of an object graph, or the closure of a sub-
graph contained in a larger object graph while remaining independent of the object
graph implementation.

Also Known As
Graph Model

Reference

Motivation
When two or more semantically equivalent object graphs having different
implementations exist, it may be necessary to have an implementation independent
representation of the graphs that that they can be validated as representing the same
‘type’, or so that common functions can be applied to them, without coupling the
functions to the graph implementations.

Note that semantic equivalence of two graphs says they represent the same idiom. For
example, a “bill of sale” would represent a common idiom. A “bill of sale” object graph
could have objects that represent the line items, buyer, supplier, etc. One
implementation of this “bill of sale” would be used by internal business logic in an
application server; another implementation could be used for the externalization of the
“bill of sale” for persistence or integration purposes. A graph plan that recognizes both

Proprietary and Confidential Page 1 9/16/2002

implementations could be used to validate the correctness of a given “bill of sale” or to
prototype a new “blank” “bill of sale”.

Applicability

Structure

graph plan whole graph sub graph+ =

Above is a conceptual diagram showing how graph plans are simply trees used to
describe portions of whole graphs.

GraphPlan

GraphNode

origin node

child node

1

1

*

1

GraphNodeSet

peer nodes

1..*

0..1

Above is a class diagram introducing the GraphNode, GraphNodeSet, and GraphPlan
classes and their relationships.

Proprietary and Confidential Page 2 9/16/2002

Consequences
The Graph Plan pattern provides for a kind of polymorphic behavior over idioms as
object graphs, or over the elements of the graphs, disregarding implementation of those
elements.

Implementation
The GraphPlan is purely optional, but it would allow trees of GraphNode instances to
be named (versioned), persisted, and shared across components of the architecture and
between threads concurrently.

The GraphNode holds the type name of the node and the edge name referencing the
node. The type name may be a “common type” name shared between all object graph
implementations, thus satisfying one of the needs for providing External Polymorphism.

The GraphNodeSet allows for substitutable nodes in the graph (sub-classes), of course
all the peer nodes owned by the GraphNodeSet must have a common type the
GraphNodeSet represents at default.

Known Uses
Grove Plan

Related Patterns
External Polymorphism

Depends

Name: External Polymorphism

Intent
Provides a means to treat different object implementations that are type equivalent,
polymorphically.

Also Known As

Reference
External Polymorphism

Motivation

Applicability

Proprietary and Confidential Page 3 9/16/2002

http://www.xml.com/pub/a/2000/04/19/groves/index.html
http://www.cs.wustl.edu/~cleeland/papers/External-Polymorphism/External-Polymorphism.html
http://www.cs.wustl.edu/~cleeland/papers/External-Polymorphism/External-Polymorphism.html

Structure

Consequences

Implementation

Known Uses

Related Patterns

Depends

Name: Instance Reference

Intent
Provides a means to encapsulate the identity of a given entity without coupling to its
implementation, especially for the case where an entity may have more than one
implementation.

Also Known As

Reference
Instance Reference – CORBA Design Patterns

Motivation

Applicability

Structure

Consequences

Proprietary and Confidential Page 4 9/16/2002

Implementation

Known Uses
CORBA Inter-ORB Reference (IOR)

Related Patterns

Depends

Name: Value Object

Intent
A special case of the Data Transfer Object pattern that requires type equivalence
between a Data Transfer Object and the business object its structure and values are
sourced from.

Also Known As

Reference

Motivation
This pattern supports cases where the business object model and type hierarchy must be
visible to client applications. It has specific support for representing both the dependent
and literal values managed by a first class business object, and the relationships between
first class business objects.

Note that this is contrary to the position of providing use-case specific struct types
coupled to façade interfaces. The goal is to mirror the semantic structure of the server
side business objects in the client applications, and put the onus of narrowing any sub
sets of the object model into applicable views, which fulfill the necessary use-cases.

Applicability

Structure

Consequences

Proprietary and Confidential Page 5 9/16/2002

Implementation

Known Uses

Related Patterns
Data Transfer Object
Transfer Object
Horizontal-Vertical-Metadata – CORBA Design Patterns

Depends

Name: Value Graph

Intent
Provides a means for a set of Value Objects to be managed as a single object graph
within a namespace.

Also Known As

Reference

Motivation
Where large numbers of objects and their relationships need to be represented and
managed in a consistent fashion on client applications.

Considering that Value Objects have only state, and no business logic, the Value Graph
pattern provides for a simple set of behavior used to maintain the integrity of the Value
Object relationships and their namespace.

Applicability

Structure

Consequences

Proprietary and Confidential Page 6 9/16/2002

http://www.martinfowler.com/isa/dataTransferObject.html
http://java.sun.com/blueprints/patterns/TransferObject.html

Implementation

Known Uses

Related Patterns

Depends
Value Object
Graph Plan

Name: Graph Visitor

Intent
Provides a means for an object graph to be traversed, without elements of the graph
becoming coupled to the traversal mechanism or structure defining the traversal path.

Also Known As

Reference

Motivation
When working with object graphs that resemble a prototypical structure, it may be
necessary to traverse the graph using the structure as a guide so as to remain
independent of the specific graph structure or implementation.

The result would allow functions to by dynamically applied to the graph elements
without directly adding new functionality to the underlying implementation or
unnecessarily coupling the applied functions to the graph implementation.

Applicability

Structure

Consequences

Proprietary and Confidential Page 7 9/16/2002

Implementation

Known Uses

Related Patterns
Graph Plan

Depends
External Polymorphism

Name: Graph Prototype

Intent
Provides a means to source new graph instances from a default graph or structure.

Also Known As

Reference

Motivation
When consistently using commonly structured object graphs, it may prove beneficial to
instantiate and source the graphs from a common prototype or (annotated) graph
structure description.

Considering the case a “bill of sale” may have one or more “line item” sub-graphs, an
idiom or structure description could be defined that provides the necessary elements that
would make up a “line item”.

If the description is stored as meta-data, and not hardwired into the system, a “line
item” definition could change over time, possibly without interrupting the system.

Applicability

Structure

Consequences

Proprietary and Confidential Page 8 9/16/2002

Implementation

Known Uses

Related Patterns

Depends

Architecture Patterns

Name: Consumer Defines the Model Architecture

Intent
Defines an architecture philosophy where servers implementing the business logic for a
problem domain, only solve the problem domain, and not the narrower client scenarios
associated with page views or other client specific use-cases.

Also Known As

Reference

Motivation
In the same sense a RDBMS server provides data sets sourced from the information
model used to structure the persisted values, the “business engine” of an application
server should only be concerned with the solution object model and their related
semantics and logic. And the client applications should be responsible for defining the
structure or closure of the model for a given view.

The converse of this is represented in the trend where application developers create
façade interfaces and struct like value objects to fulfill the requirements of a given client
application use-case. Resulting in coupling to a given use-case on both the client and
server aspects of the architecture.

Applicability

Structure

Proprietary and Confidential Page 9 9/16/2002

Consequences

Implementation

Known Uses

Related Patterns
Model-View-Controller

Depends
Horizontal-Vertical-Metadata – CORBA Design Patterns

Name: Horizontal-Vertical-Metadata

Intent
Defines an architecture philosophy resulting in interoperable, flexible, and reusable
applications.

Also Known As
Shared Semantics Architecture

Reference
Horizontal-Vertical-Metadata – CORBA Design Patterns

Motivation

Applicability

Structure

Consequences

Implementation

Known Uses

Proprietary and Confidential Page 10 9/16/2002

Related Patterns

Depends

Name: Repository Architecture

Intent
Provides a uniform system for shared access to common used resources.

Also Known As

Reference
Repository Architecture – CORBA Design Patterns

Motivation

Applicability

Structure

Consequences

Implementation

Known Uses

Related Patterns

Depends

References
T. Mowbray, R Malveau, CORBA Design Patterns, John Wiley and Sons, Inc, Canada, 1997

Proprietary and Confidential Page 11 9/16/2002

Proprietary and Confidential Page 12 9/16/2002

E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1995

	Introduction
	Base Patterns
	Name: Graph Plan
	Intent
	Also Known As
	Reference
	Motivation
	Applicability
	Structure
	Consequences
	Implementation
	Known Uses
	Related Patterns
	Depends

	Name: External Polymorphism
	Intent
	Also Known As
	Reference
	Motivation
	Applicability
	Structure
	Consequences
	Implementation
	Known Uses
	Related Patterns
	Depends

	Name: Instance Reference
	Intent
	Also Known As
	Reference
	Motivation
	Applicability
	Structure
	Consequences
	Implementation
	Known Uses
	Related Patterns
	Depends

	Name: Value Object
	Intent
	Also Known As
	Reference
	Motivation
	Applicability
	Structure
	Consequences
	Implementation
	Known Uses
	Related Patterns
	Depends

	Name: Value Graph
	Intent
	Also Known As
	Reference
	Motivation
	Applicability
	Structure
	Consequences
	Implementation
	Known Uses
	Related Patterns
	Depends

	Name: Graph Visitor
	Intent
	Also Known As
	Reference
	Motivation
	Applicability
	Structure
	Consequences
	Implementation
	Known Uses
	Related Patterns
	Depends

	Name: Graph Prototype
	Intent
	Also Known As
	Reference
	Motivation
	Applicability
	Structure
	Consequences
	Implementation
	Known Uses
	Related Patterns
	Depends

	Architecture Patterns
	Name: Consumer Defines the Model Architecture
	Intent
	Also Known As
	Reference
	Motivation
	Applicability
	Structure
	Consequences
	Implementation
	Known Uses
	Related Patterns
	Depends

	Name: Horizontal-Vertical-Metadata
	Intent
	Also Known As
	Reference
	Motivation
	Applicability
	Structure
	Consequences
	Implementation
	Known Uses
	Related Patterns
	Depends

	Name: Repository Architecture
	Intent
	Also Known As
	Reference
	Motivation
	Applicability
	Structure
	Consequences
	Implementation
	Known Uses
	Related Patterns
	Depends

	References

