
The CarrierWave Architecture Pattern

September 16, 2002

Chris K. Wensel
chris@wensel.net

1.0 Intent
To provide a simple pattern for accessing sub-graphs of semantically significant objects and
values from an application server.

2.0 Motivation
Current trends in n-layer distributed architectures tend toward:

� Static and optimized schema designs at the persistence layer
� Robust and maintainable business objects and logic at the business layer
� And use-case specific interaction patterns at the presentation layer

But where the business layer uses an abstract API to interact with the persistence layer (like
JDBC, JDO, etc), the presentation layer tends towards coupling to use-case specific façade
interfaces to by the business layer. Worse, this coupling is by design as enforced by current
EJB standards.

By describing sets of business objects as sub-graphs of the business layer “whole graph”,
and transferring this sub-graph as individual but related value objects, a single simplified
API can be presented to any client application. Significantly, this client application may or
may not be directly coupled to the business semantics of the application, thus improving
code re-usability.

Note the precedence set by RDBMS systems using the SQL language for client server
interactions. SQL provides a means to both describe the bounds of a result set, and the valid
members of the result set via the SELECT and WHERE clauses, respectively.

Equivalent benefits can be obtained by presenting client application with a simple interface
that accepts a description of the sub-graph, and attributes that describe the members of the
result set. Or more specifically, a description of the graph closure from a graph origin type,
and what origin instances the graph closure should be applied to.

3.0 Applicability
Use this pattern when an ample number of the following statements are true:

� The application uses large numbers of business objects

Proprietary and Confidential Page 1 9/16/2002

mailto:chris@wensel.net

� Product families would benefit from sharing a “business domain agnostic” platform
� The development organizations would benefit from a hierarchical dependency between

components, with shared platform development at the bottom and business domain
development at the top

4.0 Structure

graph plan whole graph sub graph+ =

A conceptual diagram showing how graph plans are simply trees used to describe portions of whole
graphs.

GraphPlan

GraphNode

origin node

child node

1

1

*

1

A class diagram introducing the GraphNode class GraphPlan classes. The GraphPlan is purely
optional, it would allow trees of GraphNode instances to be named (versioned), persisted, and shared
across components of the architecture and between threads concurrently.

Proprietary and Confidential Page 2 9/16/2002

Imageable

A class diagram introducing the Imageable type (or possibly interface) showing that it is the root type
for all business object types and sub-types.

Image ImageGraph* 1

A class diagram introducing the Image and ImageGraph types showing that the Image type is the root
type for all value object types and sub-types, or more importantly, the Image type structure mirrors
the Imageable type structure. The ImageGraph class manages the namespace for a give Image graph.

Icon

Image

Imageable

Identity

Identity

1

1

1

1

Proprietary and Confidential Page 3 9/16/2002

Proprietary and Confidential Page 4 9/16/2002

A class diagram introducing the Icon class and its relationship with the Image and Imageable classes.
Note that two Imageable and Image instances represent the same entity if they have equivalent Icon
instances.

5.0 Consequences
Key consequences of this pattern are as follows:

� Simplified remote interface: simple CRUD (create, read, update, and delete) verbs

should be sufficient for most client server interactions.
� Reduced business domain coupling: developers can consciously choose to couple to

business object semantics exposed by the typed Image classes, or only to the Image and
ImageGraph interfaces, subsequently improving code re-usability.

� Enforced separation of concerns: by not sharing business logic with the presentation
layer, presentation only code (sorting, validation, etc) and business logic code can more
easily be identified and kept separate.

� Runtime efficiency: by defining the sub-graph required to render a given page or view
with a graph plan, the available value objects can be retrieved in a single interaction with
the application server. This is especially important when the presentation layer runs out-
of-process with the application server.

6.0 Implementation
Any implementation of this pattern should consider the following:

� Default graph plans: graph plan instances can readily be generated at runtime with only

the type of the origin object and a specific depth value signifying the number of graph
edges to traverse.

� Reference counts: As Image instances are associated or disassociated in a given
namespace (owned by an ImageGraph), child Image instances can track their number of
parents. When zero, the Image instance would be an origin (has no parents) and can be
made available as such via the ImageGraph interface.

� Dynamic retrieval: applying the Strategy pattern to the ImageGraph, as child Image
instances are requested via getters on the parent Image, the ImageGraph can fault a
locally unavailable child instance from another namespace or the remote application
server.

� Few verbs: by simplifying and extending CRUD, only the following verbs should be
necessary for all server interactions; select, modify, delete, and invoke.

� Dirty Images: Image instances marked dirty would improve the efficiency of an update
of remote Imageable instances, if they weren’t previously pruned from the source Image
graph.

7.0 Related Patterns
Value Object or Transfer Object – Is a serializable class that groups related attributes,
forming a composite value.

http://java.sun.com/blueprints/patterns/TransferObject.html

	Intent
	Motivation
	Applicability
	Structure
	Consequences
	Implementation
	Related Patterns

